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Non-axisymmetric instability of a rotating layer of fluid 
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(Received 16 March 1981 and in revised form 10 June 1982) 

A mechanism previously proposed for the possible interaction between a rotating 
sheet of fluid and a rotating environment is re-investigated using the normal-mode 
method. Only azimuthal modes are considered. Stability of such a flow, if any, will 
appear as the neutral condition, i.e. the stability domain will be present as a stability 
boundxy . The stability boundary for the present flow exists only for one azimuthal 
mode with no density inhomogeneity. For general heterogeneous rotating flows 
subject to non-axisymmetric disturbances, a semi-ellipse theorem is derived with a 
restriction. In  contrast with the semicircle theorem in two-dimensional stratified 
flows, the restriction suggests that the semicircle in the complex phase-velocity plane 
does not in general provide an upper bound on all unstable waves. For rigidly rotating 
flows all unstable waves lie on a semicircle in the complex phase-velocity plane 
regardless of the density distributions. 

1. Introduction 
I n  a paper on the non-axisymmetric instability of a rotating sheet of fluid in a 

rotating environment, Sakurai (1976; henceforth referred to as I)  presented a 
mechanism for possible interaction between the sheet and the environment. According 
to his arguments, when the sheet moved outwards to a new radial location it was 
squeezed by a higher pressure a t  its new position and its thickness was decreased. 
This decrease of thickness led to an outward resultant pressure and, as a result, the 
sheet was moved further outwards. It was also conjectured that inward movement 
of the sheet was augmented in a similar way. To understand such an interaction 
better, he also treated the problem analytically by using the normal-mode approach. 
The stability domains, in which he classified the unstable waves as stationary and 
travelling, were obtained. I n  addition, the transfer of angular momentum between 
the sheet and the environment, which affected the location of stability boundaries, 
was also discussed. 

The interaction mechanism proposed in I is plausible if immiscibility exists between 
the sheet and the environment. The effect of surface tension between two immiscible 
fluids always stabilizes non-axisymmetric perturbations. Perturbations to the sheet 
will therefore cause it to be squeezed or expanded a t  a new location. Also because 
of immiscibility, such squeezing or expanding of the deformed sheet forces fluid out 
of or into that part of the sheet instead of mixing with the environment. 

For miscible fluids such as the flow considered in I, however, such an interaction 
mechanism is rather implausible because of the absence of immiscibility. Any 
deformation of the sheet may cause interchange of particles between the sheet and 
the environment and upset the steady-state profile. In  that particular profile for the 
rotating sheet, two discontinuity interfaces are present in the flow. Instabilities of 
the Rayleigh-Taylor type or of the Kelvin-Helmholtz type or of both are very likely 
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to occur a t  either one of the interfaces because of the sharp density and velocity 
gradients conveyed by such discontinuities. This is exactly the instability mechanism 
in I rather than the squeeze mechanism proposed in that paper. 

In  performing the stability analysis in I, the unstable waves were classified as 
stationary and travelling with respect to the rotating coordinate system. The 
stability boundaries for each type of wave were discussed separately. We have found 
such stability boundaries to be incorrect. 

For the rotating sheet under consideration, discontinuities exist a t  two radial 
locations and constant properties are assumed within the sheet and within the 
environment. The sheet can therefore be imagined as a ‘mirror’ to reflect the stability 
influence on both sides of the sheet, i.e. stabilizing effects imposed on one side of the 
sheet imply destabilizing effects on the other side. For simplicity, let us first assume 
that the flow is neutrally stable for some density and velocity ratios between the sheet 
and the environment. Stability curves for those ratios, of course, coincide with 
stability boundaries. Now we introduce some stabilizing effects at one interface by 
changing the velocity and density ratios. The flow is expected to be stabilized at that 
interface, and the corresponding stability curves will move away from the stability 
boundary into the stability domain. On the other hand, the same stabilizing effects 
on one side of the sheet imply destabilizing effects on the other side of the sheet. The 
stability curves for the other interface would also move away from the stability 
boundary, but into the instability domain instead. Based on this argument, the result 
of such a change of velocity and density ratios will always lead to instability. Stability 
of the flow, if any, must lie on the stability boundary. In  other words, there will be 
no domain for stability except for that which corresponds to stability boundaries. 

We will re-examine the profile first by investigating the instability characteristics 
of the governing stability equation. It will be shown from the semi-ellipse theorem 
to be derived that stationary unstable waves are impossible if no counterflows exist 
within the flow domain. This characteristic, as also supported by re-examining the 
special cases of the secular relation for stability of the rotating sheet, serves as a 
counter to the stability/instability domains obtained in I. It will also be seen that 
the stability for those cases corresponds only to the neutral conditions as previously 
discussed. The semi-ellipse theorem is proved to be valid with a restriction. In  
contrast with the case of two-dimensional stratified flows, the semicircle theorem for 
rotating flows in general does not provide a bound for all unstable waves. This 
characteristic may be seen from the derivation of the theorem and is also supported 
by an exact solution to the governing stability equation. For rigidly rotating flows, 
all unstable waves lie on a semicircle in the complex phase-velocity plane regardless 
of the density distributions. 

2. Bounds on unstable waves 
Let the axis of a cylindrical coordinate coincide with the axis of symmetry in the 

basic state of a rotating flow with angular velocity R(r) and density po(r) .  The 
governing equation for stability of the flow subject to azimuthal perturbations is 

u = 0, rD[po D*(rR)l+ ra2% 
D(po r2D*u) +{ -porn2- i-2 - w / m  (R - w/m)2 

where u is the velocity perturbation in the radial direction; w is the complex 
frequency; m is the azimuthal wavenumber, a positive integer; D = d / d r  and 
D* = D+ l l r .  We refer to Fung & Kurzweg (1975) for the assumptions and derivation 
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of the equation. The boundary conditions for ( 1 )  are u(rl)  = u ( r z )  = 0, where r1 and 
r2 are the radial positions of rigid boundaries. 

We are to  obtain bounds on possible unstable waves using the classical integral 
method. We will also point out, for certain velocity and density profiles, that  the 
bounds are the best possible. Let 

where 
u = (Q-c)$,  

0 
c = C , + i C i  = - 

m 

is the angular phase-velocity. Substituting ( 2 )  into (l), multiplying the resultant 
equation by r p ,  where 3 is the complex conjugate of $, and integrating the final 
equation over the flow region, one obtains 

j p o ( Q - c ) z Q d r +  I [ 2 r ~ ( p , ~ )  ( ~ - c ) - r ~ ( ~ p ~ ) l  ~ k l z r d r  = 0, (3) 

Q = [rzl D*$I2 + m2 l$lz] r 2 0. where 

We further let 
Q1 = po[r2 P$Iz + (m2- 1) l$lz] r 2 0. (4) 

Equation (3) than can be reduced to the relatively simple form 

j (Q2 - 2 C Q )  Q, dr + c2 

with the real and imaginary parts equal to  

( 5 )  

JQQ1dr-c,  j Q d r  = 0 (7) 

Let a ,< Q ,< b, where a and b are respectively the lower and upper bounds of the 
angular velocity, so that 

j ( n - a ) ( Q - b ) Q , d r  < 0. (8) 

Incorporating (4), (6) and (7) into (S), one obtains 

{c:+cf-(a+b)c,+ab} Qdr+ab (Dp,)r2 1$I2dr ,< 0. s s  (9) 

Equation (9) suggests that  the complex angular phase-velocity will no longer be 
bounded by a semicircle if ah(&,) < 0. This characteristic of the system will be 
demonstrated by an analytical solution to the stability equation to be given in $3 .  
Meanwhile, we will proceed to construct a semi-ellipse theorem for rotating flows. Let 

u = (Q-c)$$. (10) 

Substituting (10) into ( 1 )  and multiplying the resultant equation by r$ ,  where 6 is 
the complex conjugate of c j h ,  we obtain, from the imaginary part of the integral 
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where 

is the analogue of the local Richardson number encountered in two-dimensional 
stratified flows. Following the approach used by Kochar & Jain (1979), we obtain from 
(21, (10) and ( 1 1 )  

[ 1 + (1  - 4Jrni,):I2 Jr2( Ds2)2p, /$ . I2  r dr b 4c: Q d r ,  s (12) 

where Jmin is the minimum value of J .  Assuming ab(Dpo) 2 0 and recalling that 
nmax = b, we combine (9) and (12) to obtain 

Thus the complex angular phase-velocity for unstable waves is bounded by a 
semi-ellipse described by (13) provided that ab(Dpo) 2 0, i.e. abJ 2 0. I n  contrast with 
the semi-ellipse bound in two-dimensional stratified flows, the minor axis of the 
semi-ellipse bound for non-axisymmetric instabilities of rotating flows depends not 
only on the distribution of density but also on the upper and lower bounds of the 
azimuthal velocity. 

The above semi-ellipse bound is valid as long as J < 4. However, for uniformly 
rotating flows J -+ CO, the range of validity excludes the prediction of unstable waves 
for some important flow phenomena such as those in gaseous centrifuges or other 
rotational systems. Special consideration will have to be taken in order to  obtain a 
bound for those unstable waves. 

For uniformly rotating flows, R(r) = R,, where R, is a constant. Letting u = Y / r  
transforms ( 1 )  to 

D ( ~ ~ ~ D Y ) - - ~ ~ + A ( D ~ , )  1 Y = 0, (14) 

where 

Equation ( 14) plus the boundary conditions forms a Sturm-Liouville system having 
the following two characteristics: (i)  A is always real, i.e. Ai = 0, and (ii) A and Dp, 
are of opposite signs. These characteristics can also be obtained by the integral 
method. Rewrite (15) as 

[ l i - ( l - A ) i .  l l  (16) c = n o  1 -  

The second characteristic and ( 16) clearly demonstrate that  instabilities are impossible 
when Dp, 2 0. The first characteristic shows that the complex phase-velocity for 
unstable waves, which correspond to ci > 0 and Dp, < 0, must lie on a semicircle 

(17) 
described by 

Instabilities of this typc are certainly of centrifugal origin since no shear layers exist 
in the flow. 

I n  view of the bounds on unstable waves provided by (13) and (17 ) ,  the domains 

(c, -+R,)2 + cf = ( g 2 0 ) z .  
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of instability in I appear to be incorrect. No unstable disturbances may be expected 
to be stationary with respect to  the non-rotating coordinate system used in this paper 
or with respect to the rotating coordinate system used in I, if the fluid rotates 
unidirectionally. I n  addition, when the sheet and the environment had the same 
angular velocity, the flow considered in I was stable for the m = 1 mode regardless 
of the density difference between the sheet and the environment. Such a result is 
rather implausible. As pointed out in the previous discussion on uniformly rotating 
motion, instabilities will be expected if negative density gradients appear in the 
flow. As a matter of fact, i t  will be demonstrated by an exact solution to  the stability, 
equation that the flow profile considered in I is always unstable for all azimuthal 
modes except when the density of the sheet is the same as that of the environment - 
this is opposite to the findings in I. 

We will proceed to construct a flow profile to demonstrate the validity of the bounds 
described by (13) and (17), and to re-examine the instability domain for a rotating 
sheet in a rotating environment. 

3. Three rotating layers of fluids 

distributions : 
Consider a three-region flow having the following velocity and density 

p1 
pz (Rl d < &)> 
p 3  ( R 2 d r <  co). 

(0 d r < Rl) ,  

Here (nk  and P k  ( k  = 1,2,  3 )  are constants. The secular relation obtained by matching 
both the kinematic and dynamic interfacial conditions (including the unbalanced 
centrifugal forces arising from the discontinuities of the velocity and density a t  the 
interface) is found to be 

where 
w m  

nk = m-- = -((n k ,  - c )  
(nk (nk 

(no summation) Yjk = ___ (j, k = 1 ,  2, 3 , ) .  
P k  

We will examine the secular relation (18) for three special cases. 

3.1. Uniform rotation 

The first special case to be examined is the flow in which all three layers of fluids 
rotate a t  the same speed. The secular relation (18) for (nk = (no (k = 1 ,  2, 3) reduces 
to 

Rim - R:m 
A =  (1 > A 2 0). 

Rim + R:m 

where 



88 Y .  T .  Fung 

From (16) and (19), instabilities occur when 

Four types of density distributions exist for the flow under consideration. They are : 

except for type (a) ,  that  inequality (20) can always be satisfied and the flow is unstable 
for all modes regardless of the thickness of the middle layer. Instabilities of these types 
are certainly of centrifugal origin. The unbalanced centrifugal force due to the 
decrease of density in either the inner or the outer interface will induce instability 
as predicted. Furthermore, i t  can also be shown that the complex phase speeds for 
all these three types of density distributions lie on a semicircle given by (17).  For 
the density distribution of type (a ) ,  inequality (20)  can never be satisfied, and the 
flow is certainly stable since the density increases radially outward. 

It should be mentioned that the density profiles used in I belong to types ( c )  and 
(d) .  According to the stability domains discussed in that paper, the flow should be 
stable at least for the m = 1 mode when the sheet and the environment rotate at the 
same speed. Such a conclusion is certainly incorrect. For density distributions as those 
in types ( c )  and ( d )  negative density gradients always exist in either the inner or the 
outer interface. As demonstrated by the instability inequality (20)  and by the 
instability criteria previously discussed, the flow is unstable for all modes despite the 
thickness of the middle layer except when p1 = pz = p3. 

( a )  p3 > pz > ( b )  p3 < pz < PI; ( c )  p3 < pZ > p1; (d l  p3 > pZ < p1' It can be shown, 

3.2.  The rotating sheet 

The second special case to  be investigated is the flow profile in I, a homogeneous 
rotating sheet of fluid in a rotating environment with different density. The secular 
relation (18)  for p1 = p3 and R, = R3 reduces to 

(n~-a/32n32+2a:/32(1 + l / A ) n ~ n ~ - [ 2 ( n l - a ~ 2 n , ) - m ( l  -apZ))lz = 0, (21)  

where a: = pz/pl  and p = Rz/Ql. Since Sakurai used a coordinate system rotating 
with the environment, and a timescale normalized with the rotating speed, the 
complex frequency o in this paper is then related to the complex frequency u in I 

by 0 = (m-fT)R,; (22) 
the dispersion relation for stability governed by equation (21) of I can easily be 
obtained by substituting (22) into our equation ( 2 1 ) .  It is difficult in general to obtain 
explicit solutions to  (21). Assuming the thickness of the sheet to  be small and 
classifying the solutions into travelling and stationary disturbances as the approach 
used in I seemed to be a way to attack the problem. However, such an assumption 
and a classification are very questionable because of the dimensional dependence of 
the complex phase velocity on the sheet thickness. This behaviour can be seen from 
two exact solutions to be given below. 

Before obtaining explicit solutions to (21), we would like to point out that  two 
special cases, which happen to be the least-unstable ones, are of particular interest. 
They are the case in which the sheet and the environment rotate a t  the same speed 
and the case in which the sheet and the environment have the same density. I n  the 
former case, shear effects, which always upset flow stability, are absent. In  the latter 
case, centrifugally unbalanced forces that are induced by negative density gradients 
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at either the inner or the outer interface are eliminated. Stability of the flow described 
by (21), if any, will first exist in these two cases. 

For the first case, (21) for p = 1 has an explicit solution 

This solution can also be obtained from (19). Since the expressions inside all the 
radicals are positive-definite, the azimuthal phase velocity is always complex, 
implying travelling instability, except for a = 1 ,  which corresponds to neutral 
stability. This conclusion obviously contradicts the findings in I (figures 2 and 3) that  
the flow was stable at least for the m = 1 mode when the sheet and the environment 
rotated a t  the same speed. As also supported by the previous discussion on instability 
characteristics, centrifugal instabilities due to the existence of negative density 
gradients in either the inner or the outer interface always occur except for homo- 
geneous fluids. 

The second special case we wish to examine is for a: = 1 .  Equation (21) has an exact 

solution p- l{  [ 2 A + m 2 ( 1 - A ) ~ + i [ 2 A ( m 2 - l ) ~ }  
m2( 1 + A )  m2(1+A) . -= 1 + 2  1+ 

C 

0 1  
(24) 

Obviously the azimuthal phase velocity is complex when m + 1 and the flow is always 
unstable, except for m = 1 ,  which again is neutrally stable. Furthermore these 
unstable waves always travel when the sheet and the environment rotate in the same 
direction. This characteristic is predicted by the semi-ellipse theorem that no 
stationary disturbances can be unstable except when counter flows exist inside the 
flow domain. The finding in I (figures 2 and 3) showed that for homogeneous fluids 
all the stationary disturbances (with respect to the rotating environment) and some 
of the travelling disturbances were stable, at least for the m = 1 mode. The present 
analysis clearly shows that such a conclusion is incorrect. 

It should be pointed out that  (23) for p = 1 and (24) for a: = 1 are exact solutions 
to the secular relation (21) with no assumption on the complex phase-velocity and 
the middle-layer thickness. They clearly demonstrate that  the dimensional relation 
between the two varies with the velocity and density distribution. Sufficient care 
should be taken if dimensional analyses are performed based on the complex phase 
velocity and the middle-layer thickness. 

For flows with two interfaces, such as the one considered here, instabilities can take 
place a t  either the inner or the outer interface. Any stabilizing effect a t  one interface 
automatically implies destabilizing effect on the other interface as previously 
discussed. Stability of the system will only be neutral as in the cases shown by (23) 
and (24). I n  other words, stability, if any, will take place a t  the stability boundary. 

3.3. Two-region flow 

As the last special case to  demonstrate the validity of the semicircle or semi-ellipse 
theorem discussed earlier, a two-region flow with constant properties in each region 
is being examined. By letting Q2 = S Z ,  and p2 = p3, the solution to the secular relation 
(18) is found to be 

c, - ( m - l ) + a ~ ( m + l )  
Q, m(a+ 1)  ' 
-- 
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Instabilities exist when the sum inside the square root is greater than zero. For 
unstable waves, the semicircle theorem, if valid, for the present profile reads 

Substituting (35) into (as) ,  we obtain 

The above inequality will be satisfied if 

p(1 -a) < 0 

f4 0 2 ( P 2 - P J  2 0. (28) 
or 

It is clear that the semicircle described by (26) will no longer be the upper bound 
on the complex phase-velocity if (28) is violated. This is consistent with the restriction 
imposed on the derivat’ion of the semi-ellipse theorem in (13),  i.e. ab(Dp,) 2 0. Of 
course, for the two-region flow under consideration, the semicircle theorem provides 
us with the best possible bound on the complex phase-velocity when (28)  becomes 
an equality. The special case governed by (24) can also be shown to fall into this 
category. 

4. Conclusions 
The instability characteristics of a rotating sheet of fluid in a rotating environment 

have been re-investigated. Stability of the flow, if any, will have to be neutral. I n  
other words, the stability domain only exists as the stability boundary. The stability 
boundary in this case corresponds to the m = 1 mode with no density inhomogeneity. 

For non-axisymmetric instabilities of heterogeneous rotating flows, the semi-ellipse 
theorem holds with a restriction, i.e. when the product of the density gradient and 
the upper and lower bounds of the velocity is greater or equal to  zero. It is 
demonstrated from the derivation of the semi-ellipse theorem that the unstable phase 
velocity will no longer be bounded by a semicircle if the restriction is violated. This 
argument is supported by an exact solution to  the stability equation. For uniformly 
rotating flows, unstable waves occur when negative density gradients exist within 
the flow domain. I n  spite of the density variations such unstable waves always lie 
on a semicircle in the complex phase-velocity plane with diameter equal to the 
rotation speed. 
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